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Statistical analysis of discrimination games
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Abstract. The hypothesis that meanings originate from discrimination tasks, in which an individual at-
tempts to categorize N objects using a set of M sensory channels, is examined within a quantitative statis-
tical perspective. Failure in discrimination triggers the refinement of a randomly-chosen sensory channel,
starting thus an ongoing process, termed discrimination game, that ends only when all objects are differ-
entiated. We show that the expected number of trials of a discrimination game diverges in the case of a
single channel and scales with the power N2/M for M ≥ 2.

PACS. 89.75.Fb Structures and organization in complex systems – 02.50.Ey Stochastic processes –
02.50.Le Decision theory and game theory

Any theory that purports to explain the evolution of lan-
guage (or, more generally, of communication) must as-
sume that the individuals are endowed with some innate
categorization mechanism, which makes them capable of
classifying different types of situations and, accordingly, of
recognizing when a situation of a particular type turns up.
Meanings express patterns of categorization, but are not
innate. Rather, they are produced afresh in each individ-
ual, who creates a particular system of meanings based on
its experiences [1]. Although the meaning of a given word
is usually defined in terms of other words, at least a few
words must be grounded in reality, so they can be used
to identify actions and objects in the real world [2]. Since
the groundbreaking work of de Saussure [3] it is known
that words refer to real-world objects only indirectly as
first the sense perceptions are mapped onto a conceptual
representation — the meaning — and then this concep-
tual representation is mapped onto a linguistic representa-
tion — the words. Hence the need to taking into account
mechanisms for perceptually grounded meaning creation
in modeling language evolution.

Perceptually grounded meaning creation, viewed here
as synonymous to category creation, underlies the current
effort to develop fully autonomous robots (see, e.g., [4]
for a review) as well as a large variety of artificial-life
models of language evolution [5]. A widely used model of
autonomous, grounded meaning creation is the discrimi-
nation trees model proposed by Steels [6] (see also [7,8]
for applications in language evolution). In this model an
individual inhabits a simple world made up of N objects
or situations, each of which is described in terms of their
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features. Feature values are represented by real variables
drawn randomly from the uniform distribution in the in-
terval (0, 1). These features are, of course, abstract and
have no particular meaning in the model, though it may
be helpful to think of them as perceptual features such as
color or smell. The individual interacts with the objects
by using sensory channels, which are sensitive to the cor-
responding features of the objects. In particular, there is
a specific sensory channel for each feature of the object
(e.g., vision for color, olfaction for smell, etc.), which can
detect whether a particular value of a feature falls between
two bounds.

At the outset, the channels have no discriminating
power — they are sensitive to the entire range of fea-
ture values (0, 1). In Steels’ model, the individual has the
faculty to split the sensitivity range of a channel into two
discrete segments, resulting in a discrimination tree. The
nodes of this binary tree are then interpreted as categories
or meanings. It is the failure to distinguish between any
two objects that leads to further splitting or refinement
of the discrimination tree and hence to improvement of
the semantic structure of the sensory channel. According
to Steels [6], this is achieved through repeated discrimi-
nation games, in which the individual attempts to distin-
guish a certain object from a context formed by a subset
of the remaining objects. Whenever a failure occurs a sen-
sory channel is chosen at random, and a randomly-chosen
node of its corresponding discrimination tree is split into
two new nodes, each one sensitive to half of the range of
values of the parent node. Note that the new categories
created in this manner may or may not be useful in the
discrimination of the objects, since the refinement strategy
is completely random. This randomness is an important
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Fig. 1. Illustration of a successful discrimination game for two
sensory channels, a and b, and N = 4 for objects. The values
of the object features a and b are represented by the symbols
� and �, respectively, and labeled by the object indices. The
arrows indicate the discriminating power of the sensory chan-
nels, that can also be represented by discrimination trees. For
example, the leaf αa is sensitive to values of feature a in the
range (0, l1), whereas leaf βb to values of feature b in the range
(l2, l3).

feature of the model for when the individual is unable
to distinguish a particular object from the objects in the
context, it has not clue about the feature values of that
object, and so it should show no preference for refining any
particular sensory channel. After very many such refine-
ments one would expect that, eventually, the individual
will develop successful discrimination trees.

Despite the popularity and wide use of Steels’ model
in robotic applications, even very basic issues, such as the
dependence of the expected number of refinements neces-
sary to categorize N objects on the number M of sensory
channels, remain unexplored. In fact, as we will show be-
low in the case of a single channel, perfect categorization
is unachievable, in a statistical sense, for a finite number
of refinements.

In what follows we will consider a variant of the cate-
gorization mechanism described above. The main changes
are as follows (see Fig. 1). First, we will choose the context
of a discrimination game to be the entire set of objects.
This allows us to display the values of a given feature
of all objects in a line of unit length. There is a line for
each feature or sensory channel. Second, at each trial of
the discrimination game the individual attempts to cat-
egorize all N objects. If it succeeds then the game ends,
otherwise one of the sensory channels is refined. Hence the
number of trials of the discrimination game, denoted by
m, equals the total number of refinements. Third, the ran-
dom refinement strategy at trial m of the discrimination
game consists of two steps: first we choose a channel at
random and then we generate a uniform random number
lm ∈ (0, 1) that segments the unit length line into two new
(distinct) parts, as shown in Figure 1. At the end of the
game the whole process can be represented by discrimina-
tion trees (one tree for each channel), the leaves of which
are sensitive to feature values determined by the ordered
set of the random numbers lk associated to a channel. The
final discrimination capability of the tree is determined by

its leaves. These changes, while not affecting the essence
of the original proposal, allow us to derive analytical re-
sults for N = 2, and to carry out Monte Carlo simulations
for relatively large values of N and M .

First let us consider in detail the simplest possible situ-
ation: two objects (N = 2) and a single channel (M = 1).
The objects are characterized by the feature values xi,
i = 1, 2 which are chosen independently from the uniform
distribution in the unit interval. In this case, the rele-
vant quantity for the discrimination game is the distance
y = |x2 − x1|, since the game ends when a uniformly dis-
tributed random number l is generated such that l < y.
The probability distribution of y, defined by

p (y) =
∫ 1

0

dx1

∫ 1

0

dx2 δ (y − |x2 − x1|) , (1)

can be readily evaluated and yields p (y) = 2 (1 − y) for
y ∈ [0, 1]. Given the distance y, the probability that a uni-
form random number l is smaller than y (i.e., that it falls
between x1 and x2) is simply y. The probability that this
event happens at the mth trial is given by the geometric
distribution (1 − y)m−1

y, with m = 1, 2, . . . [9]. Hence we
can write the probability that the game ends at the mth
step regardless of the value of y as

Qm =
∫ 1

0

dyp(y) (1 − y)m−1
y =

2
(m + 1) (m + 2)

. (2)

Introducing the notation 〈m〉N,M for the average number
of refinements in the case of N objects and M sensory
channels we have

〈m〉2,1 =
∞∑

m=1

mQm = 2
∞∑

m=1

m

(
1

m + 1
− 1

m + 2

)

= 2

( ∞∑
m=1

1
m

− 1

)
(3)

which diverges due to the presence of the harmonic se-
ries. Alternatively, we can evaluate 〈m〉2,1 by first calcu-
lating the expected value of m for a fixed distance y and
then carrying out an integration over y, weighting with
the probability distribution p(y). Recalling that the mean
of the geometric distribution is given by the inverse of the
probability of a success (1/y, in our case) [9], we can write

〈m〉2,1 =
∫ 1

0

dyp(y)
1
y

= 2
∫ 1

0

dy

(
1
y
− 1

)
(4)

which also diverges, as expected. Hence, a single sensory
channel is insufficient to guarantee discrimination of two
(or more) objects. This finding may look counter-intuitive
at first sight since one might think that given sufficient
trials eventually one will come up with a uniform random
number that is smaller than the distance y separating the
feature values of the two objects. The problem with this
reasoning is that one has to wait 1/y trials in the average
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to generate such a number and since y can be arbitrar-
ily small (note that p(y) reaches its maximum at y = 0)
the waiting time, when properly averaged over y, becomes
infinite. The alternative derivation that resulted in equa-
tion (4) makes this point clear. In early simulations, the
divergent behavior of 〈m〉2,1 was mistakenly interpreted
as an exponential increase of 〈m〉N,1 with increasing N
[10], which motivated the proposal of an alternative cat-
egorization scheme, based on the modeling field theory
framework [11], that achieves perfect categorization with
a single channel. Next we will show how the introduction
of more channels easily remedies this drawback of the dis-
crimination games framework.

Assume there are M sensory channels but still two ob-
jects, and that their feature values in channel a, xa

1 and xa
2 ,

are chosen independently from the uniform distribution,
as before. Note that the feature values are statistically in-
dependent random variables, regardless of whether they
belong to the same or to distinct sensory channels. Hence
for each channel we can define the distance ya = |xa

2−xa
1 |,

which is distributed according to the same probabilitity
distribution as in the single-channel case. Since at each
trial, we choose a sensory channel at random (i.e., with
equal probability), the probability of a success (and hence
of the end of the game) is

∑M
a=1 ya/M . Hence,

〈m〉2,M =
M∏

a=1

∫ 1

0

dyap(ya)
M

y1 + . . . + yM
(5)

from which we obtain, through the explicit evaluation of
the integrals, 〈m〉2,2 = 8 (4 ln 2 − 1) /3 ≈ 4.7269 in the
case of two channels. In general, we can rewrite (5) as

〈m〉2,M = M

∫ ∞

0

dξ

[
2

∫ 1

0

dy (1 − y) e−ξy

]M

= M

∫ ∞

0

dξ

{
2
ξ

[
1 − 1

ξ

(
1 − e−ξ

)]}M

. (6)

In the limit of very many sensory channels (M � 1) only
terms ξ ∼ 1/M contribute to the integral yielding thus

〈m〉2,M = 3
(

1 +
1

2M
+

3
20M2

+ . . .

)
. (7)

The case of more than two objects (N > 2) is much
more complicated. An analytical approach in the line
of that presented before seems impossible because now
the rules of the discrimination game cannot be described
solely in terms of the distances between the object fea-
tures (in which case we could use the results of the anal-
ysis of random ordered intervals [12]): the relative po-
sition of each object feature value in a given channel
plays a role too. For instance, consider the example il-
lustrated in Figure 1, for which the feature values are
xa

1 = 0.7, xa
2 = 0.2, xa

3 = 0.8, xa
4 = 0.35 in channel a and

xb
1 = 0.1, xb

2 = 0.4, xb
3 = 0.6, xb

4 = 0.9 in channel b. Then
two trials only (e.g., l1 = 0.5 at a and l2 = 0.5 at b) are
sufficient to discriminate between the four objects. (Note

Fig. 2. Average number of trials for perfect discrimination of
N objects for M = 2(©), 3(�), 4(�), 5(�), and 8(×) sensory
channels. The solid lines are the numerical fitting (8) and the
dashed line is the lower bound obtained in the limit M → ∞.

Fig. 3. Rescaled average number of trials for perfect discrim-
ination Λ [see Eq. (9)] as function of ln N . The straight line
is the function Λ = lnN and the symbol conventions are the
same as in the previous figure.

the minor role played by the distances between feature
values in this example.) Therefore, we resort to extensive
Monte Carlo simulations of the discrimination games for
general N and M in which the results are averaged over
107 independent realizations of the object features. This
seemingly exagerated amount of samples, which makes the
sizes of the error bars negligible in comparison to the sizes
of the symbols used in the figures, is necessary to obtain
reliable estimates of the expected number of refinements
for large N and M .

The average number of trials of the discrimination
game till success 〈m〉 when the number of channels is fixed
and the number of objects is increased is illustrated in Fig-
ure 2. (Henceforth we will use the simpler notation 〈m〉
in place of 〈m〉N,M , except when we want to stress that
the analysis is valid only for particular values of M or N .)
An important feature of these results is the slow increase
of 〈m〉 with increasing N , which attests the efficiency of
the categorization mechanism. More pointedly, the data
of Figure 2 can be fitted by the function

〈m〉fitting = aM

(
N2/M − 1

)
(8)



130 The European Physical Journal B

Fig. 4. Average number of trials for perfect discrimination
in the case of M channels and N = 2(©), 4(�), 8(×), and
15(+) objects. The solid lines are the quadratic fittings in the
variable 1/M and the horizontal dashed lines are the estimated
asymptotic values that results from those fittings.

Fig. 5. Rescaled average number of trials for perfect discrim-
ination Γ [see Eq. (10)] in the case of infinitely many sensory
channels (M → ∞) as function of ln N . The straight line is the
function Γ = lnN .

with aM ≈ 2.02M + 0.54. A better appreciation of the
goodness of this fitting is obtained by rescaling 〈m〉 as

Λ =
M

2
ln

(
1 +

〈m〉
aM

)
(9)

and plotting Λ against ln N as shown in Figure 3. The
collapse of the data for different M into a single curve
demonstrates that the rescaling (9) is effective to eliminate
the dependence on M of the function Λ. In addition, the
unit slope of the straight line that fits the collapsed data
supports the validity of the scaling 〈m〉 ∼ N2/M for large
N . As expected, by increasing the number of channels M ,
we can reduce the number of trials needed to discriminate
between the objects. However, as we will see next, the
existence of a nonzero lower bound for 〈m〉 limits the gain
of using many sensory channels.

To obtain the dependence of 〈m〉 on N for large M
(dashed curve in Fig. 2), first we plot 〈m〉 as function of M
for fixed N and then we fit the data using the prescription
〈m〉 ≈ a0 + a1/M + a2/M

2, with ai = ai(N), i = 0, 1, 2,
as illustrated in Figure 4. The choice of this fitting is
motivated by the exact solution for the case N = 2
given by equation (7). The quantity of interest here is

the asymptotic value of the number of trials till success
〈m〉N,∞ = a0(N). As could be hinted from equations (8)
and (9), we find that 〈m〉N,∞ increases with N as ln N .
This can be proved by introducing the function

Γ = [〈m〉N,∞ + 0.41] /4.89 (10)

and plotting it against lnN , as shown in Figure 5.
To conclude, we have shown that Steels’ perceptually

grounded meaning creation mechanism [4,6–8], which is
based on discrimination games to categorize N objects,
can be very efficient, provided that the number of sensory
channels M is larger than one. In particular, for fixed M
and large N we find that the average number of trials of
the discrimination game till perfect discrimination, 〈m〉,
increases with N as a power N2/M (see Fig. 2). Since
2/M ≤ 1, the running time of this categorization mech-
anism increases sublinearly with the number of objects.
For infinitely many sensory channels, we find 〈m〉 ∼ ln N .
On the other hand, for fixed N and large M we find that
〈m〉 decreases with 1/M towards a nonzero constant value
(see Fig. 4). This limiting value, on its turn, increases log-
arithmically with increasing N .
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